Table of Contents
Multivariable Calculus
channel logo

Courses

  1. Linear Algebra
  2. Multivariable Calculus
  3. Differential Equations
  4. Miscellaneous Topics

Multivariable Calculus

  1. Double Integrals
    1. Cartesian dxdy
    2. Polar rdrdθ
  2. Vectors
    1. Fundamentals
    2. ab  Dot Product
    3. a×b  Cross Product
    4. Normal n to Plane
  3. Divergence
  4. Curl

Additional Resources

  1. WolframAlpha Examples
  2. Direction Field Plotter by Ariel Barton
  3. Phase Plane Plotter by Ariel Barton


NARROW DISPLAY WARNING


You are most likely using a tablet or mobile device in portrait orientation. This website is best viewed using a typical computer screen with the browser window maximized.

Viewing this website in portrait orientation can cause problems with equations being longer than the screen width (you can scroll to the right), images being poorly sized, and the font size of maths text being much smaller than regular text. If your only option is a tablet or mobile device, your viewing experience will be better if you view this website in landscape orientation. You might need to refresh the page to fix any problems after rotating.

Curl | youtube icon Chalkboard Video

An intuitive description of the curl in vector calculus is a vector operator that quantifies how much a vector field is rotating about a point and the direction of rotation. For a vector field in the xy-plane, the curl is often interpreted as a scalar function of x and y or as a vector pointing in the z direction. For a vector field in three-dimensional space, the curl is a three dimensional vector. The direction of rotation at point in the vector field follows the right hand rule with the curl vector at that point. If the curl at a point in a vector field is zero, then there is zero rotation at that point.

Definition | youtube icon Video Chapter

Two-dimensional vector field F(x,y)

For a vector field F(x,y),

F(x,y)=P(x,y),Q(x,y)

The curl(F) interpreted as a scalar is,

curl(F)=×F=QxPy

The curl(F) interpreted as a vector in the z direction is,

curl(F)=×F=0,0,QxPy

Three-dimensional vector field F(x,y,z)

For a vector field F(x,y,z),

F(x,y,z)=P(x,y,z),Q(x,y,z),R(x,y,z)

The curl(F) is a vector valued function,

curl(F)=×F=RyQz,PzRx,QxPy

An easier way to remember the formula for the curl(F) is,

curl(F)=×F=det[ijkxyzPQR]

This is the cross product of the vector and F.

×F=x,y,z×P(x,y,z),Q(x,y,z),R(x,y,z)

Intuitive 2D Derivation | youtube icon Video Chapter

The curl at a point in a vector field F(x,y) is sort of the rotation rate of the vector field arrows at that point, with anticlockwise rotation considered positive curl, clockwise rotation as negative curl, and zero rotation as zero curl. The curl in 2D can be thought of as a vector in the z direction, where the length of the vector is how much rotation there is with the vector direction following the right hand rule for anticlockwise rotation in the positive z direction and clockwise rotation in the negative z direction. An intuitive limit approximation can show where the formula comes from.

2D_curl_1

If you want to find the curl at a point (x,y) in a vector field, it's approximately the flow of arrows going around a small box in the anticlockwise direction around the point (x,y). Here the box has width Δx and height Δy. Since this is an approximation, we'll just use the vector field evaluated at the midpoint of each side. To calculate how much the arrow is pointing in the same direction as a side, take the dot product of the midpoint vector field arrow and unit vector n in the direction of rotation on that side times the length of that side.

2D_curl_23

The total rotation is the sum of the flow on all sides.

Total Rotation =[Q(x+Δx2,y)Q(xΔx2,y)]Δy[P(x,y+Δy2)P(x,yΔy2)]Δx

There's still one piece missing though. In the limit as the box shrinks around the point (x,y), the Total Rotation goes to zero because the side length go to zero.

limΔx,Δy0Total Rotation =0

So instead, the Total Rotation will be averaged over the area of the box, which is ΔxΔy.

×F(x,y)=limΔx,Δy0Total RotationΔxΔy=limΔx0Q(x+Δx2,y)Q(xΔx2,y)ΔxlimΔy0P(x,y+Δy2)P(x,yΔy2)Δy

This isn't usually the way they are written, but these are the partial derivatives of Q and P with respect to x and y.

Qx=limΔx0Q(x+Δx2,y)Q(xΔx2,y)ΔxPy=limΔy0P(x,y+Δy2)P(x,yΔy2)Δy

It's usually written as Q(x+Δx,y)Q(x,y) and P(x,y+Δy)P(x,y), but they still have a difference of Δx and Δy in their input arguments.

So then the anticlockwise rotation around the box averaged over the area of the box in the limit as the box shrinks to a point is,

×F(x,y)=limΔx,Δy0Total RotationΔxΔy=QxPy

Intuitive 3D Derivation | youtube icon Video Chapter

The idea for curl of a vector field in 3D is similar to 2D. In 2D, the rotation axis has to be the z-axis, but in 3D, the rotation axis can point in any direction. Since the axis of rotation could point in any direction, the rotation around the x, y, and z axes has to be calculated using three squares perpendicular to each axis. These three squares will have lengths and widths Δx, Δy, or Δz depending on what axis the square is perpendicular to.

3D_curl_1

A vector can be made where the x, y, and z components are the vector field's rotation around the x-axis, y-axis, and z-axis. The rotation around each square is done the same way as for 2D. This vector will point in the direction of rotation at that point in the vector field.

3D_curl_2 F(x,y,z)=P(x,y,z),Q(x,y,z)R(x,y,z)

The anticlockwise rotation around the x-axis is,

Front FlowF(x,yΔy2,z)0,0,1 Δz=R(x,yΔy2,z)ΔzBack FlowF(x,y+Δy2,z)0,0,1 Δz=R(x,y+Δy2,z)ΔzTop FlowF(x,y,z+Δz2)0,1,0 Δy=Q(x,y,z+Δz2)ΔyBottom FlowF(x,y,zΔz2)0,1,0 Δy=Q(x,y,zΔz2)Δy limΔx,Δy,Δz0x-axis RotationΔyΔz=limΔy0R(x,y+Δy2,z)R(x,yΔy2,z)ΔylimΔz0Q(x,y,z+Δx2)Q(x,y,zΔz2)Δz=RyQz

The anticlockwise rotation around the y-axis is,

Left FlowF(xΔx2,y,z)0,0,1 Δz=R(xΔx2,y,z)ΔzRight FlowF(x+Δx2,y,z)0,0,1 Δz=R(x+Δx2,y,z)ΔzTop FlowF(x,y,z+Δz2)1,0,0 Δx=P(x,y,z+Δz2)ΔxBottom FlowF(x,y,zΔz2)1,0,0 Δx=P(x,y,zΔz2)Δx limΔx,Δy,Δz0y-axis RotationΔxΔz=limΔz0P(x,y,z+Δz2)P(x,y,zΔz2)ΔzlimΔx0R(x+Δx2,y,z)R(xΔx2,y,z)Δx=PzRx

The anticlockwise rotation around the z-axis is,

Left FlowF(xΔx2,y,z)0,1,0 Δy=Q(xΔx2,y,z)ΔyRight FlowF(x+Δx2,y,z)0,1,0 Δy=Q(x+Δx2,y,z)ΔyFront FlowF(x,yΔy2,z)1,0,0 Δx=P(x,yΔy2,z)ΔxBack FlowF(x,y+Δy2,z)1,0,0 Δx=P(x,y+Δy2,z)Δx limΔx,Δy,Δz0z-axis RotationΔxΔy=limΔx0Q(x+Δx2,y)Q(xΔx2,y)ΔxlimΔy0P(x,y+Δy2)P(x,yΔy2)Δy=QxPy

The rotation about each axis make up the x, y, and z components of the curl vector.

curl(F)=×F=RyQz,PzRx,QxPy 3D_curl_3

In the above example, the rotation around the x-axis is anticlockwise (positive), around the y-axis is clockwise (negative), and around the z-axis is anticlockwise (positive). Adding those three vectors componenet together made the curl vector.