NARROW DISPLAY WARNING
You are most likely using a tablet or mobile device in portrait orientation. This website is best viewed using a typical computer screen with the browser window maximized.
Viewing this website in portrait orientation can cause problems with equations being longer than the screen width (you can scroll to the right), images being poorly sized, and the font size of maths text being much smaller than regular text. If your only option is a tablet or mobile device, your viewing experience will be better if you view this website in landscape orientation. You might need to refresh the page to fix any problems after rotating.
This method can be used to solve differential equations of the form $ay''+by'+cy=g(x)$ where $g(x)$ is restricted to combinations of polynomials, exponentials, and function of sine and cosine. The method is really just a lookup table of guesses.
In the simplest cases, the guess for the particular solution is a polynomial, an exponential, or a combination of sine and cosine.
ODE | Initial $y_{p}(x)$ Guess |
---|---|
$ay''+by'+cy= 2x^{3}-1$ | $Ax^{3}+Bx^{2}+Cx+D$ |
$ay''+by'+cy= 4e^{7x}$ | $Ae^{7x}$ |
$ay''+by'+cy= 13\sin(2x)$ | $A\cos(2x)+B\sin(2x)$ |
The capital letters $A,B,C,\ldots$ in the guesses are the undetermined coefficients, which is the name for the method. After guessing the form of the particular solution, the guess is plugged into the ODE and $A,B,C,\ldots$ are solved for to get the LHS to equal the RHS.
Find the particular solution to the following differential equation.
\begin{equation} y'' - y' - 12y = 2x^{3}-1 \end{equation}Find the particular solution to the following differential equation.
\begin{equation} y'' - y' - 12y = 4e^{7x} \end{equation}Find the particular solution to the following differential equation.
\begin{equation} y'' - y' - 12y = 13\sin(2x) \end{equation}Sometimes the RHS is a general solution. In that case, the normal guess is multiplied by $x$ until the $y_{p}(x)$ guess no longer contains a homogeneous solution.
ODE | General Solution | $y_{p}(x)$ Guess |
---|---|---|
$y''+y'= 2x^{3}-1$ | $c_{1}e^{0x}+c_{2}e^{-x}=c_{1}+c_{2}e^{-x}$ | $x(Ax^{3}+Bx^{2}+Cx+D)$ |
$y''-4y'-21y= 4e^{7x}$ | $c_{1}e^{7x}+c_{2}e^{-3x}$ | $Axe^{7x}$ |
$y''-14y'+49y= 4e^{7x}$ | $c_{1}e^{7x}+c_{2}xe^{7x}$ | $Ax^{2}e^{7x}$ |
$y''+4y= 13\sin(2x)$ | $c_{1}\cos(2x)+c_{2}\sin(2x)$ | $Ax\cos(2x)+Bx\sin(2x)$ |
It's always important to solve for the homogeneous solution first so you don't make a guess that won't work.
Find the solution to the following differential equation.
\begin{equation} y''+y'= 2x^{3}-1 \end{equation}Find the solution to the following differential equation.
\begin{equation} y''-4y'-21y= 4e^{7x} \end{equation}Find the solution to the following differential equation.
\begin{equation} y''-14y'+49y= 4e^{7x} \end{equation}Find the solution to the following differential equation.
\begin{equation} y''+4y= 13\sin(2x) \end{equation}If the RHS $g(x)$ is a sum of the functions that can be guessed for, $y_{p}(x)$ is just a sum of all those guesses.
ODE | Initial $y_{p}(x)$ Guess |
---|---|
$ay''+by'+cy= 2x^{3}-1 + 4e^{7x} + 13\sin(2x)$ | $Ax^{3}+Bx^{2}+Cx+D + Ae^{7x} + A\cos(2x)+B\sin(2x)$ |
Keep in mind that the particular solution can still require modification depending on the homogeneous solutions.
ODE and General Solution | $y_{p}(x)$ Guess |
---|---|
$y''+y'= 2x^{3}-1 + 4e^{7x} + 13\sin(2x)$ $y_{h}(x) = c_{1}e^{0x}+c_{2}e^{-x}=c_{1}+c_{2}e^{-x}$ |
$x(Ax^{3}+Bx^{2}+Cx+D) + Ee^{7x} + F\cos(2x)+G\sin(2x)$ |
$y''-4y'-21y= 2x^{3}-1 + 4e^{7x} + 13\sin(2x)$ $y_{h}(x) = c_{1}e^{7x}+c_{2}e^{-3x}$ |
$Ax^{3}+Bx^{2}+Cx+D + Exe^{7x} + F\cos(2x)+G\sin(2x)$ |
$y''-14y'+49y= 2x^{3}-1 + 4e^{7x} + 13\sin(2x)$ $y_{h}(x) = c_{1}e^{7x}+c_{2}xe^{7x}$ |
$Ax^{3}+Bx^{2}+Cx+D + Ex^{2}e^{7x} + F\cos(2x)+G\sin(2x)$ |
$y''+4y= 2x^{3}-1 + 4e^{7x} + 13\sin(2x)$ $y_{h}(x) = c_{1}\cos(2x)+c_{2}\sin(2x)$ |
$Ax^{3}+Bx^{2}+Cx+D + Ee^{7x} + Fx\cos(2x)+Gx\sin(2x)$ |
If the RHS $g(x)$ is a product of the functions that can be guessed for, $y_{p}(x)$ is just a product of all those guesses.
ODE | Initial $y_{p}(x)$ Guess |
---|---|
$ay''+by'+cy= (x^{2}-4) e^{7x} \sin(2x)$ | $(Ax^{2}+Bx+C) e^{7x} \big(D\cos(2x)+E\sin(2x)\big)$ $C$ could be replaced with 1. |
You only have to multiply the guess by $x$ if, after multiplying everything out, one of the terms is a constant times a homogeneous solution.
ODE and General Solution | $y_{p}(x)$ Guess |
---|---|
$y''-y'-12y = (x^{2}-4) e^{7x} \sin(2x)$ $y_{h}(x) = c_{1}e^{-3x}+c_{2}e^{4x}$ |
$(Ax^{2}+Bx+C) e^{7x} \big(D\cos(2x)+E\sin(2x)\big)$ |
$y''+y' = (x^{2}-4) e^{7x}$ $y_{h}(x) = c_{1}+c_{2}e^{-x}$ |
$(Ax^{2}+Bx+C) e^{7x}$ |
$y''+y' = (x^{2}-4) e^{7x} \sin(2x)$ $y_{h}(x) = c_{1}+c_{2}e^{-x}$ |
$(Ax^{2}+Bx+C) e^{7x} \big(D\cos(2x)+E\sin(2x)\big)$ |
$y''-7y' = e^{7x} \sin(2x)$ $y_{h}(x) = c_{1}+c_{2}e^{7x}$ |
$e^{7x} \big(A\cos(2x)+B\sin(2x)\big)$ |
$y''-7y' = (x^{2}-4) e^{7x}$ $y_{h}(x) = c_{1}+c_{2}e^{7x}$ |
$x(Ax^{2}+Bx+C) e^{7x}$ |
$y''-7y' = (x^{2}-4) e^{7x} \sin(2x)$ $y_{h}(x) = c_{1}+c_{2}e^{7x}$ |
$(Ax^{2}+Bx+C) e^{7x} \big(D\cos(2x)+E\sin(2x)\big)$ |
$y''+8y'+25y = (x^{2}-4) e^{-4x} \sin(2x)$ $y_{h}(x) = c_{1}e^{-4x}\cos(3x)+c_{2}e^{-4x}\sin(3x)$ |
$(Ax^{2}+Bx+C) e^{-4x} \big(D\cos(2x)+E\sin(2x)\big)$ |
$y''+8y'+25y = (x^{2}-4) e^{-4x} \sin(3x)$ $y_{h}(x) = c_{1}e^{-4x}\cos(3x)+c_{2}e^{-4x}\sin(3x)$ |
$x(Ax^{2}+Bx+C) e^{-4x} \big(D\cos(3x)+E\sin(3x)\big)$ |
$y''+8y'+25y = (x^{2}-4) e^{-4x}$ $y_{h}(x) = c_{1}e^{-4x}\cos(3x)+c_{2}e^{-4x}\sin(3x)$ |
$(Ax^{2}+Bx+C) e^{-4x}$ |
$y''+8y'+25y = (x^{2}-4) \sin(3x)$ $y_{h}(x) = c_{1}e^{-4x}\cos(3x)+c_{2}e^{-4x}\sin(3x)$ |
$(Ax^{2}+Bx+C) \big(D\cos(3x)+E\sin(3x)\big)$ |